
Regular Expressions for Perl, C, PHP,
Python, Java, and .NET

Tony Stubblebine

Pocket Reference

Regular
Expression

Regular Expression
Pocket Reference

Tony Stubblebine

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

1

Regular Expression
Pocket Reference

Regular expressions (known as regexps or regexes) are a way
to describe text through pattern matching. You might want
to use regular expressions to validate data, to pull pieces of
text out of larger blocks, or to substitute new text for old
text.

Regular expression syntax defines a language you use to
describe text. Today, regular expressions are included in
most programming languages as well as many scripting lan-
guages, editors, applications, databases, and command-line
tools. This book aims to give quick access to the syntax and
pattern-matching operations of the most popular of these
languages.

About This Book
This book starts with a general introduction to regular expres-
sions. The first section of this book describes and defines the
constructs used in regular expressions and establishes the
common principles of pattern matching. The remaining sec-
tions of the book are devoted to the syntax, features, and
usage of regular expressions in various implementations.

The implementations covered in this book are Perl, Java, .NET
and C#, Python, PCRE, PHP, the vi editor, JavaScript, and
shell tools.

2 | Regular Expression Pocket Reference

Conventions Used in This Book
The following typographical conventions are used in this
book:

Italic
Used for emphasis, new terms, program names, and
URLs

Constant width

Used for options, values, code fragments, and any text
that should be typed literally

Constant width italic

Used for text that should be replaced with user-supplied
values

Acknowledgments
The world of regular expressions is complex and filled with
nuance. Jeffrey Friedl has written the definitive work on the
subject, Mastering Regular Expressions (O’Reilly), a work on
which I relied heavily when writing this book. As a conve-
nience, this book provides page references to Mastering Reg-
ular Expressions, Second Edition (MRE) for expanded
discussion of regular expression syntax and concepts.

This book simply would not have been written if Jeffrey
Friedl had not blazed a trail ahead of me. Additionally, I owe
him many thanks for allowing me to reuse the structure of
his book and for his suggestions on improving this book. Nat
Torkington’s early guidance raised the bar for this book.
Philip Hazel, Ron Hitchens, A.M. Kuchling, and Brad Mer-
rill reviewed individual chapters. Linda Mui saved my sanity
and this book. Tim Allwine’s constant regex questions
helped me solidify my knowledge of this topic. Thanks to
Schuyler Erle and David Lents for letting me bounce ideas off
of them. Lastly, many thanks to Sarah Burcham for her con-
tributions to the “Shell Tools” sections and for providing the
inspiration and opportunity to work and write for O’Reilly.

Introduction to Regexes and Pattern Matching | 3

Introduction to Regexes
and Pattern Matching
A regular expression is a string containing a combination of
normal characters and special metacharacters or metase-
quences. The normal characters match themselves. Meta-
characters and metasequences are characters or sequences of
characters that represent ideas such as quantity, locations, or
types of characters. The list in the section “Regex Metachar-
acters, Modes, and Constructs” shows the most common
metacharacters and metasequences in the regular expression
world. Later sections list the availability of and syntax for
supported metacharacters for particular implementations of
regular expressions.

Pattern matching consists of finding a section of text that is
described (matched) by a regular expression. The underlying
code that searchs the text is the regular expression engine.
You can guess the results of most matches by keeping two
rules in mind:

1. The earliest (leftmost) match wins
Regular expressions are applied to the input starting at
the first character and proceeding toward the last. As
soon as the regular expression engine finds a match, it
returns. (See MRE 148-149, 177–179.)

2. Standard quantifiers are greedy
Quantifiers specify how many times something can be
repeated. The standard quantifiers attempt to match as
many times as possible. They settle for less than the max-
imum only if this is necessary for the success of the
match. The process of giving up characters and trying
less-greedy matches is called backtracking. (See MRE
151–153.)

Regular expression engines have subtle differences based on
their type. There are two classes of engines: Deterministic
Finite Automaton (DFA) and Nondeterministic Finite Autom-
aton (NFA). DFAs are faster but lack many of the features of

4 | Regular Expression Pocket Reference

an NFA, such as capturing, lookaround, and non-greedy
quantifiers. In the NFA world there are two types: Tradi-
tional and POSIX.

DFA engines
DFAs compare each character of the input string to the
regular expression, keeping track of all matches in
progress. Since each character is examined at most once,
the DFA engine is the fastest. One additional rule to
remember with DFAs is that the alternation metase-
quence is greedy. When more than one option in an
alternation (foo|foobar) matches, the longest one is
selected. So, rule #1 can be amended to read “the long-
est leftmost match wins.” (See MRE 155–156.)

Traditional NFA engines
Traditional NFA engines compare each element of the
regex to the input string, keeping track of positions
where it chose between two options in the regex. If an
option fails, the engine backtracks to the most recently
saved position. For standard quantifiers, the engine
chooses the greedy option of matching more text; how-
ever, if that option leads to the failure of the match, the
engine returns to a saved position and tries a less greedy
path. The traditional NFA engine uses ordered alterna-
tion, where each option in the alternation is tried sequen-
tially. A longer match may be ignored if an earlier option
leads to a successful match. So, rule #1 can be amended
to read “the first leftmost match after greedy quantifiers
have had their fill.” (See MRE 153–154.)

POSIX NFA engines
POSIX NFA Engines work similarly to Traditional NFAs
with one exception: a POSIX engine always picks the
longest of the leftmost matches. For example, the alter-
nation cat|category would match the full word “cate-
gory” whenever possible, even if the first alternative
(“cat”) matched and appeared earlier in the alternation.
(See MRE 153–154.)

Introduction to Regexes and Pattern Matching | 5

Regex Metacharacters, Modes,
and Constructs
The metacharacters and metasequences shown here repre-
sent most available types of regular expression constructs
and their most common syntax. However, syntax and avail-
ability vary by implementation.

Character representations

Many implementations provide shortcuts to represent some
characters that may be difficult to input. (See MRE 114–117.)

Character shorthands
Most implementations have specific shorthands for the
alert, backspace, escape character, form feed, newline,
carriage return, horizontal tab, and vertical tab char-
acters. For example, \n is often a shorthand for the new-
line character, which is usually LF (012 octal) but can
sometimes be CR (15 octal) depending on the operating
system. Confusingly, many implementations use \b to
mean both backspace and word boundary (between a
“word” character and a non-word character). For these
implementations, \b means backspace in a character class
(a set of possible characters to match in the string) and
word boundary elsewhere.

Octal escape: \num
Represents a character corresponding to a two- or three-
octal digit number. For example, \015\012 matches an
ASCII CR/LF sequence.

 Hex and Unicode escapes: \xnum, \x{num}, \unum, \Unum
Represents a character corresponding to a hexadecimal
number. Four-digit and larger hex numbers can represent
the range of Unicode characters. For example, \x0D\x0A

matches an ASCII CR/LF sequence.

6 | Regular Expression Pocket Reference

Control characters: \cchar
Corresponds to ASCII control characters encoded with
values less than 32. To be safe, always use an uppercase
char—some implementations do not handle lowercase
representations. For example, \cH matches Control-H, an
ASCII backspace character.

Character classes and class-like constructs

Character classes are ways to define or specify a set of charac-
ters. A character class matches one character in the input
string that is within the defined set. (See MRE 117–127.)

Normal classes: [...] and [^...]

Character classes, [...], and negated character classes,
[^...], allow you to list the characters that you do or do
not want to match. A character class always matches one
character. The - (dash) indicates a range of characters.
To include the dash in the list of characters, list it first or
escape it. For example, [a-z] matches any lowercase
ASCII letter.

Almost any character: dot (.)
Usually matches any character except a newline. The
match mode can often be changed so that dot also
matches newlines.

Class shorthands: \w, \d, \s, \W, \D, \S
Commonly provided shorthands for digit, word charac-
ter, and space character classes. A word character is often
all ASCII alphanumeric characters plus the underscore.
However, the list of alphanumerics can include addi-
tional locale or Unicode alphanumerics, depending on
the implementation. For example, \d matches a single
digit character and is usually equivalent to [0-9].

POSIX character class: [:alnum:]
POSIX defines several character classes that can be
used only within regular expression character classes
(see Table 1). For example, [:lower:], when written as
[[:lower:]], is equivalent to [a-z] in the ASCII locale.

Introduction to Regexes and Pattern Matching | 7

Unicode properties, scripts, and blocks: \p{prop}, \P{prop}
The Unicode standard defines classes of characters that
have a particular property, belong to a script, or exist
within a block. Properties are characteristics such as
being a letter or a number (see Table 2). Scripts are sys-
tems of writing, such as Hebrew, Latin, or Han. Blocks
are ranges of characters on the Unicode character map.
Some implementations require that Unicode properties
be prefixed with Is or In. For example, \p{Ll} matches
lowercase letters in any Unicode supported language,
such as a or α.

Unicode combining character sequence: \X
Matches a Unicode base character followed by any num-
ber of Unicode combining characters. This is a short-
hand for \P{M}\p{M}. For example, \X matches è as well
as the two characters e'.

Table 1. POSIX character classes

Class Meaning

alnum Letters and digits.

alpha Letters.

blank Space or tab only.

cntrl Control characters.

digit Decimal digits.

graph Printing characters, excluding space.

lower Lowercase letters.

print Printing characters, including space.

punct Printing characters, excluding letters and digits.

space Whitespace.

upper Uppercase letters.

xdigit Hexadecimal digits.

8 | Regular Expression Pocket Reference

Table 2. Standard Unicode properties

Property Meaning

\p{L} Letters.

\p{Ll} Lowercase letters.

\p{Lm} Modifier letters.

\p{Lo} Letters, other. These have no case and are not considered modifiers.

\p{Lt} Titlecase letters.

\p{Lu} Uppercase letters.

\p{C} Control codes and characters not in other categories.

\p{Cc} ASCII and Latin-1 control characters.

\p{Cf} Non-visible formatting characters.

\p{Cn} Unassigned code points.

\p{Co} Private use, such as company logos.

\p{Cs} Surrogates.

\p{M} Marks meant to combine with base characters, such as accent marks.

\p{Mc} Modification characters that take up their own space. Examples include
“vowel signs.”

\p{Me} Marks that enclose other characters, such as circles, squares, and
diamonds.

\p{Mn} Characters that modify other characters, such as accents and umlauts.

\p{N} Numeric characters.

\p{Nd} Decimal digits in various scripts.

\p{Nl} Letters that are numbers, such as Roman numerals.

\p{No} Superscripts, symbols, or non-digit characters representing numbers.

\p{P} Punctuation.

\p{Pc} Connecting punctuation, such as an underscore.

\p{Pd} Dashes and hyphens.

\p{Pe} Closing punctuation complementing \p{Ps}.

\p{Pi} Initial punctuation, such as opening quotes.

\p{Pf} Final punctuation, such as closing quotes.

\p{Po} Other punctuation marks.

\p{Ps} Opening punctuation, such as opening parentheses.

Introduction to Regexes and Pattern Matching | 9

Anchors and zero-width assertions

Anchors and “zero-width assertions” match positions in the
input string. (See MRE 127–133.)

Start of line/string: ^, \A
Matches at the beginning of the text being searched. In
multiline mode, ^ matches after any newline. Some
implementations support \A, which only matches at the
beginning of the text.

End of line/string: $, \Z, \z
$ matches at the end of a string. Some implementations
also allow $ to match before a string-ending newline. If
modified by multiline mode, $ matches before any new-
line as well. When supported, \Z matches the end of
string or before a string-ending newline, regardless of
match mode. Some implementations also provide \z,
which only matches the end of the string, regardless of
newlines.

Start of match: \G
In iterative matching, \G matches the position where the
previous match ended. Often, this spot is reset to the
beginning of a string on a failed match.

\p{S} Symbols.

\p{Sc} Currency.

\p{Sk} Combining characters represented as individual characters.

\p{Sm} Math symbols.

\p{So} Other symbols.

\p{Z} Separating characters with no visual representation.

\p{Zl} Line separators.

\p{Zp} Paragraph separators.

\p{Zs} Space characters.

Table 2. Standard Unicode properties (continued)

Property Meaning

10 | Regular Expression Pocket Reference

Word boundary: \b, \B, \<, \>
Word boundary metacharacters match a location where
a word character is next to a non-word character. \b

often specifies a word boundary location, and \B often
specifies a not-word-boundary location. Some implemen-
tations provide separate metasequences for start- and
end-of-word boundaries, often \< and \>.

Lookahead: (?=...), (?!...)
Lookbehind: (?<=...), (?<!...)

Lookaround constructs match a location in the text where
the subpattern would match (lookahead), would not
match (negative lookahead), would have finished match-
ing (lookbehind), or would not have finished matching
(negative lookbehind). For example, foo(?=bar) matches
foo in foobar but not food. Implementations often limit
lookbehind constructs to subpatterns with a predeter-
mined length.

Comments and mode modifiers

Mode modifiers are a way to change how the regular expres-
sion engine interprets a regular expression. (See MRE 109–
112, 133–135.)

Multiline mode: m
Changes the behavior of ^ and $ to match next to new-
lines within the input string.

Single-line mode: s
Changes the behavior of . (dot) to match all characters,
including newlines, within the input string.

Case-insensitive mode: i
Treat as identical letters that differ only in case.

Free-spacing mode: x
Allows for whitespace and comments within a regular
expression. The whitespace and comments (starting with
and extending to the end of the line) are ignored by the
regular expression engine.

Introduction to Regexes and Pattern Matching | 11

Mode modifiers: (?i), (?-i), (?mod:…)
Usually, mode modifiers may be set within a regular
expression with (?mod) to turn modes on for the rest of
the current subexpression; (?-mod) to turn modes off for
the rest of the current subexpression; and (?mod:…) to
turn modes on or off between the colon and the closing
parentheses. For example, "use (?i:perl)" matches “use
perl”, “use Perl”, “use PeRl”, etc.

Comments: (?#...) and #

In free-spacing mode, # indicates that the rest of the line
is a comment. When supported, the comment span (?#...)

can be embedded anywhere in a regular expression, regard-
less of mode. For example, .{0,80}(?#Field limit is

80 chars) allows you to make notes about why you
wrote .{0,80}.

Literal-text span: \Q...\E
Escapes metacharacters between \Q and \E. For example,
\Q(.*)\E is the same as \(\.*\).

Grouping, capturing, conditionals, and control

This section covers the syntax for grouping subpatterns, cap-
turing submatches, conditional submatches, and quantifying
the number of times a subpattern matches. (See MRE 135–
140.)

Capturing and grouping parentheses: (...) and \1, \2, …
Parentheses perform two functions: grouping and captur-
ing. Text matched by the subpattern within parentheses is
captured for later use. Capturing parentheses are num-
bered by counting their opening parentheses from the left.
If backreferences are available, the submatch can be
referred to later in the same match with \1, \2, etc. The
captured text is made available after a match by implemen-
tation-specific methods. For example, \b(\w+)\b\s+\1\b

matches duplicate words, such as the the.

12 | Regular Expression Pocket Reference

Grouping-only parentheses: (?:...)
Groups a subexpression, possibly for alternation or quan-
tifiers, but does not capture the submatch. This is useful
for efficiency and reusability. For example, (?:foobar)

matches foobar, but does not save the match to a capture
group.

Named capture: (?<name>…)
Performs capturing and grouping, with captured text
later referenced by name. For example, Subject:

(?<subject>.*) captures the text following Subject: to a
capture group that can be referenced by the name
subject.

Atomic grouping: (?>...)
Text matched within the group is never backtracked
into, even if this leads to a match failure. For example,
(?>[ab]*)\w\w matches aabbcc but not aabbaa.

Alternation: ...|...
Allows several subexpressions to be tested. Alterna-
tion’s low precedence sometimes causes subexpres-
sions to be longer than intended, so use parentheses to
specifically group what you want alternated. For exam-
ple, \b(foo|bar)\b matches either of the words foo or
bar.

Conditional: (?if then | else)

The if is implementation dependent, but generally is a
reference to a captured subexpression or a lookaround.
The then and else parts are both regular expression pat-
terns. If the if part is true, the then is applied. Other-
wise, else is applied. For example, (<)?foo(?(1)>|bar)

matches <foo> and foobar.

Greedy quantifiers: *, +, ?, {num,num }

The greedy quantifiers determine how many times a con-
struct may be applied. They attempt to match as many
times as possible, but will backtrack and give up matches
if necessary for the success of the overall match. For
example, (ab)+ matches all of ababababab.

Introduction to Regexes and Pattern Matching | 13

Lazy quantifiers: *?, +?, ??, {num,num }?

Lazy quantifiers control how many times a construct may
be applied. However, unlike greedy quantifiers, they
attempt to match as few times as possible. For example,
(an)+? matches only an of banana.

Possessive Quantifiers: *+, ++, ?+, {num,num }+

Possessive quantifiers are like greedy quantifiers, except
that they “lock in” their match, disallowing later back-
tracking to break up the sub-match. For example,
(ab)++ab will not match ababababab.

PHP | 63

PHP
This reference covers PHP 4.3’s Perl-style regular expression
support contained within the preg routines. PHP also pro-
vides POSIX-style regular expressions, but these do not offer
additional benefit in power or speed. The preg routines use a
Traditional NFA match engine. For an explanation of the
rules behind an NFA engine, see “Introduction to Regexes
and Pattern Matching.”

Supported Metacharacters
PHP supports the metacharacters and metasequences listed
in Tables 31 through 35. For expanded definitions of each
metacharacter, see “Regex Metacharacters, Modes,
and Constructs.”

Table 31. Character representations

Sequence Meaning

\a Alert (bell), x07.

\b Backspace, x08, supported only in character class.

\e ESC character, x1B.

\n Newline, x0A.

\r Carriage return, x0D.

\f Form feed, x0C.

\t Horizontal tab, x09

\octal Character specified by a three-digit octal code.

\xhex Character specified by a one- or two-digit hexadecimal code.

\x{hex} Character specified by any hexadecimal code.

\cchar Named control character.

Table 32. Character classes and class-like constructs

Class Meaning

[...] A single character listed or contained within a listed range.

64 | Regular Expression Pocket Reference

[^...] A single character not listed and not contained within a listed
range.

[:class:] POSIX-style character class valid only within a regex character
class.

. Any character except newline (unless single-line mode,/s).

\C One byte; however, this may corrupt a Unicode character
stream.

\w Word character, [a-zA-z0-9_].

\W Non-word character, [^a-zA-z0-9_].

\d Digit character, [0-9].

\D Non-digit character, [^0-9].

\s Whitespace character, [\n\r\f\t].

\S Non-whitespace character, [^\n\r\f\t].

Table 33. Anchors and zero-width tests

Sequence Meaning

^ Start of string, or after any newline if in multiline match mode,
/m.

\A Start of search string, in all match modes.

$ End of search string or before a string-ending newline, or before
any newline if in multiline match mode, /m.

\Z End of string or before a string-ending newline, in any match
mode.

\z End of string, in any match mode.

\G Beginning of current search.

\b Word boundary; position between a word character (\w) and a
non-word character (\W), the start of the string, or the end of
the string.

\B Not-word-boundary.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

(?<=...) Positive lookbehind.

Table 32. Character classes and class-like constructs

Class Meaning

PHP | 65

(?<!...) Negative lookbehind.

Table 34. Comments and mode modifiers

Modes Meaning

i Case-insensitive matching.

m ^ and $ match next to embedded \n.

s Dot (.) matches newline.

x Ignore whitespace and allow comments (#) in pattern.

U Inverts greediness of all quantifiers: * becomes lazy and *?
greedy.

A Force match to start at search start in subject string.

D Force $ to match end of string instead of before the string
ending newline. Overridden by multiline mode.

u Treat regular expression and subject strings as strings of multi-
byte UTF-8 characters.

(?mode) Turn listed modes (imsxU) on for the rest of the subexpression.

(?-mode) Turn listed modes (imsxU) off for the rest of the subexpression.

(?mode:...) Turn mode (xsmi) on within parentheses.

(?-mode:...) Turn mode (xsmi) off within parentheses.

(?#...) Treat substring as a comment.

#... Rest of line is treated as a comment in x mode.

\Q Quotes all following regex metacharacters.

\E Ends a span started with \Q.

Table 35. Grouping, capturing, conditional, and control

Sequence Meaning

(...) Group subpattern and capture submatch into \1,\2,…

(?P<name>…) Group subpattern and capture submatch into named capture
group, name.

\n Contains the results of the nth earlier submatch from a
parentheses capture group or a named capture group.

Table 33. Anchors and zero-width tests

Sequence Meaning

66 | Regular Expression Pocket Reference

(?:...) Groups subpattern, but does not capture submatch.

(?>...) Disallow backtracking for text matched by subpattern.

...|... Try subpatterns in alternation.

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 time, but as few times as possible.

{n,}? Match at least n times, but as few times as possible.

{x,y}? Match at least x times, no more than y times, and as few times
as possible.

*+ Match 0 or more times, and never backtrack.

++ Match 1 or more times, and never backtrack.

?+ Match 0 or 1 times, and never backtrack.

{n}+ Match at least n times, and never backtrack.

{n,}+ Match at least n times, and never backtrack.

{x,y}+ Match at least x times, no more than y times, and never
backtrack.

(?(condition)
...|...)

Match with if-then-else pattern. The condition can be either
the number of a capture group or a lookahead or lookbehind
construct.

(?(condition)
...)

Match with if-then pattern. The condition can be either the
number of a capture group or a lookahead or lookbehind
construct.

Table 35. Grouping, capturing, conditional, and control (continued)

Sequence Meaning

PHP | 67

Pattern-Matching Functions
PHP provides several standalone functions for pattern
matching. When creating regular expression strings, you
need to escape embedded backslashes; otherwise, the back-
slash is interpreted in the string before being sent to the regu-
lar expression engine.

array preg_grep (string pattern, array input)

Return array containing every element of input matched
by pattern.

int preg_match_all (string pattern, string subject, array
matches [, int flags])

Search for all matches of pattern against string and
return the number of matches. The matched substrings
are placed in the matches array. The first element of
matches is an array containing the text of each full match.
Each additional element N of matches is an array contain-
ing the Nth capture group match for each full match. So
matches[7][3] contains the text matches by the seventh
capture group in the fourth match of pattern in string.

The default ordering of matches can be set explicitly with
the PREG_SET_ORDER flag. PREG_SET_ORDER sets a more intu-
itive ordering where each element of matches is an array
corresponding to a match. The zero element of each
array is the complete match, and each additional ele-
ment corresponds to a capture group. The additional flag
PREG_OFFSET_CAPTURE causes each array element contain-
ing a string to be replaced with a two-element array con-
taining the same string and starting character position in
subject.

int preg_match (string pattern, string subject [, array
matches [, int flags]])

Return 1 if pattern matches in subject, otherwise return
0. If the matches array is provided, the matched substring
is placed in matches[0] and any capture group matches
are placed in subsequent elements. One allowed flag,
PREG_OFFSET_CAPTURE, causes elements of matches to be

68 | Regular Expression Pocket Reference

replaced with a two-element array containing the
matched string and starting character position of the
match.

string preg_quote (string str [, string delimiter])

Return a str with all regular expression metacharacters
escaped. Provide the delimiter parameter if you are
using optional delimiters with your regular expression
and need the delimiter escaped in str.

mixed preg_replace_callback (mixed pattern, callback
callback, mixed subject [, int limit])

Return text of subject with every occurrence of pattern

replaced with the results of callback. The callback should
take one parameter, an array containing the matched text
and any matches from capture groups. If provided, the
function performs no more than limit replacements. If
pattern has the /e modifier, replacement is parsed for
reference substitution and then executed as PHP code.

If pattern is an array, each element is replaced with
callback. If subject is an array, the function iterates over
each element.

mixed preg_replace (mixed pattern, mixed replacement, mixed
subject [, int limit])

Return text of subject with every occurrence of pattern

replaced with replacement. If provided, the function per-
forms no more than limit replacements. The replace-
ment string may refer to the match or capture group
matches with $n (preferred) or \n (deprecated). If pattern
has the /e modifier, replacement is parsed for reference
substitution and then executed as PHP code.

If pattern is an array, then each element is replaced with
replacement or, if replacement is an array, the corre-
sponding element in replacement. If subject is an array,
the function iterates over each element.

PHP | 69

array preg_split (string pattern, string subject [, int
limit [, int flags]])

Return an array of strings broken around pattern. If
specified, preg_split() returns no more than limit sub-
strings. A limit is the same as “no limit,” allowing you to
set flags. Available flags are: PREG_SPLIT_NO_EMPTY, return
only non-empty pieces; PREG_SPLIT_DELIM_CAPTURE, return
captured submatches after each split substring; and PREG_

SPLIT_OFFSET_CAPTURE, return an array of two-element
arrays where the first element is the match and the sec-
ond element is the offset of the match in subject.

Examples

Example 19. Simple match

//Match Spider-Man, Spiderman, SPIDER-MAN, etc.

$dailybugle = "Spider-Man Menaces City!";

$regex = "/spider[-]?man/i";

if (preg_match($regex, $dailybugle)) {

 //do something

}

Example 20. Match and capture group

//Match dates formatted like MM/DD/YYYY, MM-DD-YY,...

$date = "12/30/1969";

$p = "!(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\d)?)!";

if (preg_match($p,$date,$matches) {

 $month = $matches[1];

 $day = $matches[2];

 $year = $matches[3];

}

Example 21. Simple substitution

//Convert
 to
 for XHTML compliance

$text = "Hello world.
";

$pattern = "{
}i";

70 | Regular Expression Pocket Reference

Other Resources
• PHP’s online documentation at http://www.php.net/pcre.

echo preg_replace($pattern, "
", $text);

Example 22. Harder substitution

//urlify - turn URL's into HTML links

$text = "Check the website, http://www.oreilly.com/catalog/

repr.";

$regex =

 "{ \\b # start at word\n"

 . " # boundary\n"

 . "(# capture to $1\n"

 . "(https?|telnet|gopher|file|wais|ftp) : \n"

 . " # resource and colon\n"

 . "[\\w/\\#~:.?+=&%@!\\-]+? # one or more valid\n"

 . " # characters\n"

 . " # but take as little as\n"

 . " # possible\n"

 . ")\n"

 . "(?= # lookahead\n"

 . "[.:?\\-]* # for possible punct\n"

 . "(?:[^\\w/\\#~:.?+=&%@!\\-] # invalid character\n"

 . "|$) # or end of string\n"

 . ") }x";

echo preg_replace($regex, "$1", $text);

Example 21. Simple substitution (continued)

	part1A
	part1B

